Qué no podrían ser los números

Paul Benacerraf*

La atención del matemático se centra primariamente sobre la estructura matemática, y su deleite intelectual surge (en parte) de ver que una teoría dada exhibe tal y tal estructura, de ver cómo una estructura es “modelada” en otra, o exhibiendo alguna nueva estructura y mostrando cómo se relaciona con otras previamente estudiadas... Pero... el matemático está satisfecho con tal de tener algunas “entidades” u “objetos” (o “conjuntos”, o “números”, o “funciones”, o “espacios”, o “puntos”) para trabajar, y no investiga su carácter interno o estatus ontológico.

El lógico filosófico, por otro lado, es más sensible a cuestiones de ontología y estará especialmente interesado en la clase o clases de entidades que realmente hay... No estará satisfecho al decirle sólo que tales y tales entidades tienen tal y tal estructura matemática. Deseará investigar más profundamente qué son esas entidades y cómo se relacionan con otras entidades... También deseará preguntar si la entidad considerada es sui generis o si es en algún sentido reducible a (o construible en términos de) otras entidades, quizá más fundamentales.

R. M. MARTIN, Intension and Decision

* La mayor parte del trabajo de este artículo se hizo mientras este autor gozaba de una Beca de Facultad Procter y Gamble, lo cual reconoce agradecidamente. Estoy en deuda con Paul Ziff por sus útiles comentarios sobre un boceto anterior de este artículo.

[Este artículo, originariamente titulado “What numbers could not be”, se publicó primero en The Philosophical Review 74 (1965) 47-73, y fue reimpreso en P. Benacerraf y H. Putnam Philosophy of mathematics. Selected readings, segunda edición, Cambridge University Press, 1983. Versión castellana de Xavier Arnalit i Carballido. Edición, revisión de la traducción y notas de Francisco Rodríguez Consuegra. (El profesor Benacerraf, al saber que estábamos preparando esta traducción, nos manifestó estar agradecido y halagado por el proyecto. Sin embargo, no accedió a aprovechar esta publicación, como le habíamos propuesto, para escribir algunos párrafos emitiendo alguna opinión sobre la extensa literatura que se ha publicado durante los últimos veinte años en reacción a este altamente influyente artículo. Su argumento para no hacerlo fue que un trabajo como éste tiene su propia vida, que es independiente de su autor, por lo que la opinión de éste no debería suscitar mayor interés que la de cualquier otro comentarista)].

Mathesis 9 (1993) 317-343
... podemos [por medio de las definiciones anteriores] decir lo que significa
“al concepto F le corresponde el número 1+1”,
y luego, utilizando esto, podemos indicar el sentido de la expresión
“al concepto F le corresponde el número 1+1+1”,
etc.; pero, mediante nuestras definiciones, nunca podremos decidir... si a un concepto le corresponde el número Julio César, ni si este famoso conquistador de las Galias es un número o no.

G. FREGE, The Foundations of Arithmetic

I. La educación

Imaginemos a Ernie y Johnny, hijos de dos logico-s enantes —niños a quienes no se les ha enseñado de la manera corriente (pasada de moda), sino para quienes el orden de cosas pedagógico ha sido el epistemológico—. Ellos no han aprendido directamente cómo contar. En lugar de comenzar su formación matemática con la aritmética, como la conocen las personas corrientes, aprendieron primero lógica —en su caso realmente teoría de conjuntos—. Después se les habló de los números. Pero hablarles de los números a personas en su posición fue una tarea fácil —muy parecida a la que afrontó el tutor de Monsieur Jourdain (quien, aunque parezca mentira, fue un filósofo)—. Los padres de nuestros niños imaginarios necesitaron sólo señalar qué aspecto o parte de lo que los niños ya conocían, bajo otros nombres, era lo que las personas corrientes llamaban “números”. Aprender los números supuso simplemente aprender nuevos nombres para conjuntos conocidos. Así, viejas verdades (conjuntistas) adoptaron nuevos ropajes (número-teóricos).

La manera en que esto se hizo será, sin embargo, analizada y reexaminada. Para facilitar la exposición, me centraré en Ernie y seguiré su educación aritmética hasta su terminación. Después volveré a Johnny.

Podría haber sucedido como sigue. A Ernie se le dijo que había un conjunto cuyos miembros eran aquello a lo que las personas corrientes se referían como los números (naturales), y que éstos eran lo que él había conocido siempre como los elementos del conjunto (infinito) N. Se le dijo además que había una relación definida en esos “números” (en lo sucesivo omitiré, por lo general, las comillas), la relación menor que, bajo la cual los números estaban bien ordenados. Aprendió que esta re-

* Seguimos aquí la traducción de C. U. Moulines del alemán (G. Frege, Fundamentos de la aritmética, Barcelona: Laia, 1972, pág. 82), para evitar traducir lo ya traducido al inglés (T.).
lación, definida en N, era realmente aquella para la que él siempre había usado la letra "R". Y, desde luego, hablando ahora intuitivamente, Ernie pudo verificar que todo subconjunto no vacío de N contenía un "último" elemento —esto es, uno que R generaba para cada miembro del subconjunto—. Pudo también mostrar que R no generaba nada con respecto a sí misma, y que era transitiva, antisimétrica, irreflexiva y conexa en N. En resumen, los elementos de N formaban una progresión, o serie, bajo R.

Y entonces vino el 1, el número más pequeño (por razones de conveniencia futura ignoramos el 0). Ernie aprendió que aquello a lo que las personas se habían estado refiriendo como 1 era realmente el elemento a de N, el primero, o último, elemento de N bajo R. Los enunciados sobre "sucesores" (se dice que cada número tiene uno) se tradujeron fácilmente en términos del concepto del miembro "siguiente" de N (bajo R). En este punto, no hubo engaño en mostrar que las presunciones hechas por los mortales corrientes sobre los números eran de hecho teoremas para Ernie. Pues, sobre la base de su teoría, él podía establecer los axiomas de Peano —una ventaja que él disfrutaba sobre los mortales corrientes, quienes más o menos deben tomarlos como dados, o autoevidentes, o sinsentidos-pero-útiles, o como lo que se tiene—.

Hay dos cosas más que Ernie tuvo que aprender antes de que se pudiera verdaderamente decir de él que era capaz de hablar con el vulgo. Hubo que señalarle qué operaciones sobre los miembros de N eran las referidas como "suma", "multiplicación", "exponenciación" y demás. Y aquí de nuevo estuvo en posición de superioridad epistemológica. Pues mientras el pueblo corriente tenía que introducir tales operaciones por definición recursiva, un eufemismo para la postulación, él estuvo en posición de mostrar que esas operaciones podían ser explícitamente definidas. Así, se mostró también que los postulados adicionales asumidos por la gente "numérica"* eran derivables en su teoría, una vez visto lo que las operaciones conjuntistas suma, multiplicación, etc., eran realmente.

El último elemento necesario para completar la educación de Ernie fue la explicación de las aplicaciones de esos recursos: contar y medir. Pues en ellas se emplean conceptos que sobrepasan los hasta ahora introducidos. Pero afortunadamente Ernie estaba en posición de ver qué era lo que correspondía a esas actividades en lo que él estaba haciendo

1. No es necesario que los detalles de las pruebas nos detengan ahora.

* El autor, exhibiendo un buen humor que impregna todo el artículo, se refiere aquí a las personas que ven los números de forma tradicional como "number people", tras haberlo hecho más arriba como "ordinary folk". Así, a veces será imposible mantener la literalidad, que creemos lo más conveniente en literatura científica (T.)
(nosotros nos centraremos en el contar, asumiendo que el medir puede explicarse en términos del contar, o de forma similar).

Hay dos formas de contar, que corresponden a los usos transitivo e intransitivo del verbo "contar". En uno "contar" admite objeto directo, como en "contar las canicas"; en el otro no. El caso que tengo presente es el del paciente preoperatorio que está siendo preparado para el quirófano. La máscara de éter se le coloca en el rostro y se le dice que cuente hasta donde pueda. No se le dice que cuente nada en particular, sino simplemente que cuente. Una explicación verosímil consiste en decir que normalmente aprendemos los primeros números en conexión con conjuntos que tienen ese número de miembros —esto es, en términos del contar transitivo (por tanto aprendiendo el uso de los números)— y después aprendiendo cómo generar "el resto" de los números. En realidad, "el resto" siempre permanece como algo relativamente vago. La mayoría de nosotros aprendemos simplemente que no acabaríamos nunca, que nuestra notación se extendería tanto como necesitásemos contar. Aprender estas palabras, y cómo repetirlas en el orden correcto, es aprender el contar intransitivo. Aprender a usarlas para medir conjuntos es aprender el contar transitivo. La cuestión de si aprendemos o no una forma de contar antes que la otra es irrelevante en lo tocante a los números iniciales. Lo que es cierto, y relevante, es que tendremos que aprender algún procedimiento recursivo para generar la notación en el orden apropiado antes de que hayamos aprendido a contar transitivamente, pues hacerlo último es, directa o indirectamente, correlacionar los elementos de la serie de los números con los miembros del conjunto que estamos contando. Parece, por tanto, que es posible para alguien aprender a contar intransitivamente sin aprender a contar transitivamente. Pero no al revés. Creo que éste es un punto de alguna importancia. ¿Pero qué es exactamente el contar transitivo?

Contar los miembros de un conjunto es determinar su cardinalidad. Es establecer qué relación particular C se da entre el conjunto y uno de los números —esto es, uno de los elementos de N (nos limitaremos aquí a contar conjuntos finitos)—. Hablando prácticamente, y en casos sencillos, uno determina que un conjunto tiene k elementos tomando sus elementos uno a uno (a veces metafóricamente), tal como decimos los números (empezando por el 1 y en orden de magnitud, siendo k el último número dicho). Contar los elementos de algún conjunto b de k miembros es establecer una correspondencia biunívoca* entre los elementos de b y los de N que sean menores o iguales que k. Tal correspondencia se estable-

* Traducimos sistemáticamente "one-to-one" por "biunívoca", término más al día en nuestro ámbito (T.).
ce mediante la relación "señalar-a-cada-miembro-de-b-sucesivamente-
miembros-decimos-los números-hasta-incluyendo-k".

Puesto que Ernie tiene a su disposición la maquinaria necesaria para
mostrar que tal correspondencia existe entre dos conjuntos finitos equi-
valentes cuálesquiera, será un teorema de su sistema que cualquier con-
junto tiene k miembros si y sólo si puede ser puesto en correspondencia
biunívoca con el conjunto de números menores o iguales a k. Antes de
que pueda decirse que la educación de Ernie (y el análisis del número)
ha terminado, debería mencionarse una última condición de R: que sea
al menos recursiva, y posiblemente incluso recursiva primitiva. Nunca
he visto esta condición incluida en el análisis del número, pero me pare-
ce tan obviamente necesaria que su inclusión es difícilmente discutible.
Hemos visto ya que Quine rechaza (por implicación) que esto constitui-
ya una necesidad adicional: "La condición de toda explicación acepta-
ble del número... puede formularse...: cualquier progresión —esto es,
cualquier serie infinita cada uno de cuyos miembros tenga sólo una
serie finita de precursores— servirá perfectamente" (véase la nota 1 de
esta página). Pero supongamos, por ejemplo, que uno escoge la progre-
sión $A = a_1, a_2, a_3, ... a_n, ...$ obtenida como sigue. Dividanse los enteros
positivos en dos secuencias B y C, colocando dentro de cada secuencia
los elementos en orden de magnitud. Sea B (esto es, $b_1, b_2, ...$) la se-
cuencia de los números de Gödel de fórmulas válidas de la teoría de la

1. No está universalmente aceptado que estas dos últimas partes de nuestro relato (que
definen las operaciones y la cardinalidad) se requieran de hecho para una explicación
adecuada del número. Por ejemplo, W. V. Quine explícitamente niega que se necesite
hacer algo más que proporcionar una progresión que sirva como lo hacen los números.
Así, afirma: "La condición de toda explicación aceptable del número... puede formu-
larse...: cualquier progresión —esto es, cualquier serie infinita cada uno de cuyos
miembros tenga sólo una serie finita de precursores— servirá perfectamente. Russell
sostuvo una vez que había que cumplir otra condición, la de que haya algún modo de
aplicar los sucesivos de los números a la medición de la multiplicidad; esto es, un
modo de decir (1) Hay n objetos x tales que Fx. Pero se trataba de un error, pues toda
progresión puede adaptarse al cumplimiento de esta segunda condición. Pues (1) pue-
de parafrasearse diciendo que los números menores que n [Quine usa también el 0] ad-
miten a correlación con los objetos x tales que Fx. Esto exige que nuestro aparato
incluya la suficiente teoría elemental de relaciones como para poder hablar de correla-
ción, o relación biunívoca; pero no requiere nada especial acerca de los números, ex-
cepto que éstos formen una progresión" (Quine 1960: 262-263). [Seguimos sólo
parcialmente la traducción castellana de M. Sacristán: W. V. Quine, Palabra y objeto,
Barcelona: Labor, 1968, pág. 271]. Querría disentir. La explicación de la cardinalidad
—esto-es, del uso de los números para el "contar transitivo", como lo he llamado—
es parte y parcela de la explicación del número. En efecto, si puede excluise sobre la
base que Quine ofrece, podríamos también decir que no hay ninguna condición nece-
saria, ya que la única que él cita es dificilmente necesaria, dado "que nuestro aparato
incluye la suficiente teoría de conjuntos como para contener una progresión". Pero
volveré sobre este punto.
cuantificación, bajo alguna numeración apropiada, y sea C (esto es, c_1, c_2, \ldots) la secuencia de los enteros positivos que no son números de fórmulas válidas de la teoría de la cuantificación bajo esa numeración (en orden de magnitud en cada caso). Ahora en la secuencia A sea $a_{2n-1} = b_n$ y $a_{2n} = c_n$ para cada n. Está claro entonces que, aunque A es una progresión, no es recursiva, y mucho menos recursiva primitiva. Con la misma claridad, esta progresión sería inutilizable como los números —y la razón es que esperamos que si sabemos qué números designan dos expresiones, podemos calcular en un número finito de pasos cuál es el “mayor” (en este caso, cuál aparece más tarde en A)—.1

Más dramáticamente, si se dice que el conjunto b tiene n miembros, y que c tiene m, debería ser posible determinar en un número finito de pasos cuál tiene más miembros. Es precisamente eso lo que no es posible aquí. Esta capacidad (decir en un número finito de pasos cuál de los dos números es el mayor) se conecta con el contar (tanto con el transitorio como con el intransitivo), ya que su posibilidad equivale a la posibilidad de generar (“decir”) los números en orden de magnitud (esto es, en su orden en A). No podríamos saber que estábamos diciéndonos en orden de magnitud ya que, al no existir regla recursiva para generar sus miembros, no podríamos saber cuál debería ser su orden de magnitud. Esto es, desde luego, una afirmación muy fuerte. Hay aquí dos cuestiones, ambas interesantes, ninguna de las cuales podría razonadamente discutirse en este artículo. (1) ¿Podría un ser humano constituir un procedimiento de decisión para conjuntos no recursivos, o es el organismo humano, en el mejor de los casos, una máquina de Turing (en el aspecto relevante)? Si lo último, entonces no podríamos existir un ser humano que generase la secuencia A, y mucho menos que supusiera que eso es lo que estaba haciendo. Incluso si la respuesta a (1) es, sin embargo, que un ser humano podría ser (actuar o ser usado como) tal procedimiento de deci-

1. Hay, por supuesto, una dificultad con la noción de “saber qué números designan dos expresiones”. Es la vieja dificultad ilustrada por el siguiente ejemplo. Abraham piensa un número, y lo mismo hace Isaac. Llamemos al número de Abraham a y al de Isaac i. ¿Es a mayor que i? Si a qué número se refiere a: al de Abraham. Y similarmente con i. Pero eso no me acerca a una decisión sobre cuál es el mayor. Esto puede evitarse, sin embargo, exigiendo que los números se den en notación canónica, como sigue. Sirva la definición (recursiva) habitual de los números para definir el conjunto de los “números”, pero no para establecer su orden. Tómese entonces la mencionada definición de A como definiendo la relación menor que entre los miembros de ese conjunto, definiéndose así la progresión. (El hecho de que la progresión no recursiva que utiliza sea una progresión de números es claramente accidental para el punto en cuestión. La utilice aquí sólo para evitar las elaboradas circunlocuciones que resultarían de hacerlo todo de forma conjuntista. Se podría lograr el mismo efecto introduciendo los “números” como fórmulas de la teoría de la cuantificación, en lugar de sus números de Godel, y usando las fórmulas autónomamente).
sión, la siguiente cuestión todavía se plantearía y exigiría respuesta: (2) ¿podría tal ser conocer todas las verdades de la forma \(i < j\) (en A)? Parece que lo que constituye conocimiento podría excluir esa posibilidad.

Pero ya he hecho una digresión suficiente sobre esta cuestión. El punto principal es que la relación "<" sobre los números debe ser recursiva. Obviamente, no puedo probar de forma rigurosa que se trate de un requisito, porque no puedo probar que el hombre sea, en el mejor de los casos, una máquina de Turing. Que ese requisito resulte satisfecho por la habitual relación "<" entre números —el paradigma de una relación recursiva primitiva— y que ha sido también satisfecho por todos los análisis detallados propuestos constituye una buena evidencia de su corrección.\(^1\) Estoy explicitando lo que casi todos dan por sentado. Más abajo veremos que una explicación plausible de por qué esto se da por sentado conecta muy estrechamente con una de las posturas que sostengo.

Así fue como Ernie aprendió que en realidad había estado haciendo teoría de números toda su vida (supongo que aproximadamente del mismo modo que nuestros niños aprenderán este sorprendente hecho sobre ellos mismos si la nouvelle vague de profesores de matemáticas se las arregla para llevarles a todos).

Debería estar claro que la educación de Ernie es ahora completa. Ha aprendido a hablar con el vulgo, y debería ser evidente para todos que mi descripción inicial fue correcta. Tenía a su disposición todo lo necesario para el concepto de número. Se podría incluso decir que poseía ya los conceptos de número, cardinal, ordinal y las operaciones habituales con ellos, y que necesitaba sólo aprender un vocabulario diferente. Afirmando que no hay nada relacionado con la tarea de "reducir" el concepto de número a la lógica (o la teoría de conjuntos) que no se haya hecho más arriba, o que no se pueda hacer siguiendo las líneas ya marcadas.

Para recapitular: fue necesario (1) dar definiciones de "1", "número", "sucesor", "+", "\(\times\)" y así sucesivamente, en base a lo cual las leyes de la aritmética podrían derivarse; y (2) explicar los usos "extramatemáticos" de los números, siendo el principal de ellos el contar —de ahí la introducción de los conceptos de cardinalidad y número cardinal—.

Confío en que ambas cosas se hayan hecho satisfactoriamente y en que lo anterior contenga todos los elementos de una correcta exposición, aunque lo haga de manera algo incompleta. Nada de lo anterior

1. Y es trivialmente satisfecho, no hace falta decirlo, en cualquier análisis que proporcione una correlación efectiva entre los nombres de los "números" del análisis y los demás nombres ordinarios bajo los que conocemos aquellos números.
era esencialmente nuevo; me disculpo por lo tedioso de haber expuesto estos detalles todavía una vez más, pero será crucial para mi argumento que la suficiencia de la exposición anterior se aprecie claramente. Pues si es suficiente, podemos presumir que Ernie sabe ahora lo que son los conjuntos de números.

II. El dilema

La historia de la sección anterior podría haberse contado también de Johnny, el amigo de Ernie. Pues su educación satisfizo precisamente las condiciones mencionadas. Encantados con lo que habían aprendido, empezaron los dos a probar teoremas sobre números. Sin embargo, pronto se percataron de que algo andaba mal comparando sus notas, pues inmediatamente sobrevino una discusión sobre si el 3 pertenecía o no al 17. Ernie dijo que pertenecía, Johnny que no. Los intentos de resolver el problema preguntando al pueblo corriente (que había tratado con los números como números durante mucho tiempo) sólo lograron suscitar, comprensiblemente, miradas vacías. En favor de su punto de vista, Ernie señaló su teorema de que para cualesquiera dos números, \(x\) e \(y\), \(x\) es menor que \(y\) si \(y\) sólo si \(x\) pertenece a \(y\), y \(x\) es un subconjunto propio de \(y\). Puesto que ambos admitían que 3 es menor que 17, se infería que 3 pertenecía a 17. Johnny, por otra parte, opuso que el "teorema" de Ernie estaba equivocado, pues dados dos números, \(x\) e \(y\), si \(x\) pertenece a \(y\) y \(y\) sólo si \(x\) es el sucesor de \(x\). Se trataba de dos "teoremas" claramente incompatibles. Excluyendo la posibilidad de la inconsistencia de su teoría de conjuntos común, la incompatibilidad debía residir en las definiciones. Primero "menor que". Pero ambos mantenían que \(x\) es menor que \(y\) sólo si \(x\) tiene la relación \(R\) con \(y\). Sin embargo, una pequeña exploración reveló la fuente del problema. Para Ernie, el sucesor bajo \(R\) de un número \(x\) era el conjunto compuesto de \(x\) y de todos los miembros de \(x\), mientras para Johnny el sucesor de \(x\) era simplemente \([x]\), el conjunto unitario de \(x\)—el conjunto cuyo único miembro es \(x\).—. Puesto que para ambos 1 era el conjunto unitario del conjunto vacío, sus respectivas progresiones eran

(i) \([\emptyset], [\emptyset, [\emptyset]], [\emptyset, [\emptyset, [\emptyset]], [... para Ernie

(ii) \([\emptyset], [[[\emptyset]], [[[\emptyset]]], [... para Johnny.

Matthesis
Hubo, sin embargo, ulteriores desacuerdos. Como se recordará, Ernie había podido probar que un conjunto tenía \(n \) elementos si y sólo si podía ponerse en correspondencia biunívoca con el conjunto de los números menores o iguales que \(n \). Johnny asintió. Pero no estuvieron de acuerdo cuando Ernie exigió además que un conjunto tuviese \(n \) miembros si y sólo si podía ponerse en correspondencia biunívoca con el número \(n \) mismo. Pues para Johnny cada número tenía un único miembro. En resumen, sus relaciones de cardinalidad eran diferentes. Para Ernie, 17 tenía 17 miembros, mientras para Johnny tenía sólo uno.\(^1\) Y así les iba.

Bajo tales circunstancias, el origen de los desacuerdos se hizo perfectamente obvio. Pero lo que no resultó tan obvio fue cómo habrían de resolverse. El problema era éste: si las conclusiones de la sección anterior son correctas, entonces ambos chicos habían dado explicaciones correctas de los números. A cada uno le había dicho su padre qué conjunto era realmente el conjunto de los números. A cada uno se le enseñó qué objeto —cuya existencia independiente pudiera probar— era el número 3. A cada uno se le dio una explicación del significado (y la referencia) de los términos numéricos para la que no podía hallarse excepción alguna y sobre cuya base podría explicarse todo lo que sabemos sobre números o hacemos con ellos. A cada uno se le enseñó que algún conjunto particular de objetos contenía aquello a lo que se referían realmente quienes usaban términos numéricos. Pero los conjuntos eran diferentes en cada caso. Y así estaban definidas las relaciones sobre estos conjuntos —incluyendo las cruciales, como la cardinalidad y similares—.

Pero si, como creo que coincidiremos, la explicación de la sección anterior fue correcta —no sólo en lo que abarcaba, sino correcta en el sentido de que contenía condiciones a la vez necesarias y suficientes para cualquier explicación correcta de los fenómenos en discusión—, entonces el hecho de que Ernie y Johnny estuvieran en desacuerdo sobre qué conjuntos particulares son los números es fatal para el punto de vista de que cada número es algún conjunto particular. Pues si el número 3 es de hecho algún conjunto particular \(b \), no puede ser que dos explicaciones correctas del significado de “3” —y por tanto también de su referencia— asignen dos conjuntos diferentes al 3. Pues si es cierto que para algún conjunto \(b \), \(3 = b \), entonces no puede ser cierto que para algún conjunto \(c \), diferente de \(b \), \(3 = c \).

1. Algunos de sus primos tipo-teóricos tenían opiniones incluso más peculiares —para ser de cardinalidad 5 un conjunto tenía que pertenecer a uno de los números 5—. Digo “algunos” porque otros no usaban esa definición de cardinalidad, o de números, sino que se ponían de parte de Ernie o de Johnny.
Pero si la explicación de Ernie es adecuada en virtud de satisfacer las condiciones detalladas en la Sección I, también lo es la de Johnny, que satisface también aquellas condiciones. Estamos ante un dilema. Tenemos dos explicaciones (infinitas, en realidad) del significado de ciertos términos (‘número’, ‘uno’, ‘dieciséis’, etc.) cada uno de las cuales satisface lo que parecen ser condiciones necesarias y suficientes para una explicación correcta. Aunque hay diferencias entre ellas, parece que ambas son correctas en virtud de satisfacer condiciones comunes. Si ello es así, las diferencias son accidentales y no afectan a la corrección. Además, en terminología fregeana, cada relación fija el *sentido* de los términos cuyo análisis proporciona. Cada explicación debe, por tanto, fijar también la *referencia* de estas expresiones. Aun así las dos explicaciones diferencian, como hemos visto, en un punto: en los referentes asignados a los términos bajo análisis. Esto nos deja con las siguientes alternativas:

(A) Las dos explicaciones son correctas en sus pretensiones: ambas contienen condiciones cada una de las cuales era necesaria y que en conjunto eran suficientes: Por tanto $3 = [[[\emptyset]]], y 3 = [\emptyset, \{\emptyset\}, [\emptyset, [\emptyset]]]$.

(B) Ambas explicaciones no son correctas; esto es, al menos una contenía condiciones que no eran necesarias y posiblemente no lograba abarcar condiciones adicionales que, tomadas junto con las restantes, constituirían un conjunto de condiciones suficientes.

(A) es, desde luego, absurda. Así, debemos explorar (B).

Las dos explicaciones coinciden en su estructura global. Difieren cuando se trata de fijar los referentes de los términos en cuestión. Dada la identificación de los números con algún conjunto particular de conjuntos, las dos explicaciones coinciden, en general, en las relaciones definidas sobre ese conjunto; bajo ambas tenemos lo que demostrablemente es una progresión recursiva y una función sucesor que sigue el orden de esa progresión. Además, las nociones de cardinalidad se definen en términos de la progresión, asegurando así que la afirmación de que un conjunto tiene n miembros si y sólo si puede ponerse en correspondencia biunívoca con el conjunto de números menores o iguales que n se convierte en un teorema para todo n. Finalmente, las operaciones aritméticas ordinarias se definen para esos ‘‘números’’. Las dos explicaciones difieren en la forma en que se define la cardinalidad, pues en la de Ernie el hecho de que el número n tuviera n miembros fue utiliza-
do para definir la noción de tener n miembros. Sin embargo, estaban de acuerdo en el resto de aspectos.

Por lo tanto, si no es el caso, como seguramente no lo es, que tanto $3 = [[[\varnothing]]]$ como $3 = [\varnothing, [\varnothing], [\varnothing, [\varnothing]]]$, entonces al menos una de las correspondientes explicaciones es incorrecta, al contener una condición que no es necesaria. Puede ser incorrecta en otros aspectos también, pero al menos su claridad está en proporción a lo anterior. De nuevo puedo distinguir dos posibilidades: o todas las condiciones recién enumeradas, que comparten ambas explicaciones, son necesarias para una completa y correcta explicación, o algunas no lo son. Asumamos que se da lo primero, si bien me reservo el derecho a descartar esta suposición si se hace necesario cuestionarla.

Si todas las condiciones que ambas explicaciones comparten son necesarias, entonces las condiciones superflucas hay que encontrarlas entre aquellas que no comparten. De nuevo hay dos posibilidades: o al menos una de las explicaciones que satisface las condiciones que hemos asumido como necesarias, pero que asigna un conjunto definido a cada número, es correcta, o ninguna lo es. Está claro que dos explicaciones diferentes no pueden satisfacer tales condiciones, puesto que no son equivalentes ni siquiera extensionalmente, y mucho menos intensionalmente. Por tanto exactamente una es correcta o ninguna lo es. Pero entonces la correcta debe ser la que seleccione qué conjunto de conjuntos constituye de hecho los números. Afrontamos ahora un problema crucial: si existe tal explicación “correcta”, ¿existen también argumentos que la puedan mostrar como la correcta? O ¿existe un conjunto particular de conjuntos b, que, constituya realmente los números, pero tal que no exista ningún argumento que pueda establecer que tal conjunto, y no, digamos, el conjunto N de Ernie, constituye realmente los números? En conjunto, parece demasiado obvio que esta última posibilidad raya en el absurdo. Si los números constituyen un conjunto particular de conjuntos, y no otro, entonces debe haber argumentos que indiquen cuál es. Al defender esto no me estoy comprometiendo con la tesis de que todo problema matemático es decíduble mediante prueba —pues ni considero esto un problema matemático, ni susceptible de prueba—. La respuesta a la pregunta que estoy suscitando se seguirá del análisis de cuestiones de la forma “¿es $n = ...$?” Será suficiente por ahora con señalar la diferencia entre nuestra pregunta y

¿existe el mayor número primo p tal que $p + 2$ sea también primo?
O incluso

¿existe un conjunto infinito de números reales no equivalente ni con el conjunto de los enteros ni con el conjunto de todos los números reales?

Al esperar la clarificación de la verdadera identidad del 3 no estamos esperando la prueba de algún teorema profundo. Habiendo logrado lo que ya tenemos sin establecer la identidad del 3, no podemos ir más allá. No sabemos qué aspecto podría tener semejante prueba. La noción de “explicación correcta” se libera de sus amarras si admitimos la posible existencia de respuestas injustificables, pero correctas, a preguntas tales como ésta. Tomarse en serio la pregunta “¿es $3 = [[[\emptyset]]]?$” tout court (y no elípticamente por “¿en la explicación de Ernie?”), en ausencia de alguna manera de establecerla, es desorientar por completo. No; si tal pregunta tiene respuesta, entonces hay argumentos en su apoyo, y si no hay tales argumentos, entonces no hay explicación “correcta” que discrimine entre todas las explicaciones que satisfagan las condiciones de las que nos hacíamos recordatorio un par de páginas atrás.

¿Cómo entonces pudimos distinguir la explicación correcta de todas las posibles? ¿Existe un conjunto de conjuntos que tiene más posibilidades de constituir los números que cualquier otro? ¿Existen razones que puedan aducirse para identificar ese conjunto? Frege escogió como número 3 la extensión del concepto “equivalente con algún conjunto de 3 miembros”; esto es, para Frege un número era una clase de equivalencia —la clase de todas las clases equivalentes a una clase dada—. Aun que se trata de una noción atrayente, parece existir poco que nos permita recomendarla por encima de la de Ernie. Se ha argumentado que es una explicación más adecuada porque los términos numéricos son realmente predicados de clase, y que esta explicación revela ese hecho. La postura consiste en que al decir que hay $n F$’s se está predicando la n-idad de F, exactamente igual que al decir que el rojo es un color se está predicando la coloridad* del rojo. No creo que esto sea verdadero. Y tampoco lo pensaba Frege (1950: sec. 57). Es ciertamente verdadero que decir

(1) hay dieciséis leones en el zoológico

* Traducimos de esta forma “colorhood”, como “n-hood” más arriba y otros similares, para preservar al máximo la literalidad (T.).
no es predicar la diecisiénte-idad de cada león individual. Supongo que es también verdadero que si hay diecisiénte leones en el zoológico y también diecisiénte tigres en el zoológico, las clases de leones-en-el-zoológico y de tigres-en-el-zoológico están en una clase común, pero volvemos a esto. No se sigue de ello que (1) predique la diecisiénte-idad de una de aquellas clases. Primero, la evidencia gramatical para esto es desde luego escasa. Lo mejor que puede uno evocar, mediante un ejemplo de término numérico que aparezca en posición predicativa, es algo más bien artificial, como lo es

(2) los leones del zoológico son diecisiénte.

Si no interpretamos esto como una manifestación sobre la edad de los animales,** vemos que tal enunciado no predica nada de ningún león individual. Uno podría entonces sucumbir a la tentación de analizar (2) como la frase nominal “los leones en el zoológico” seguida de la frase verbal “son diecisiénte”, donde el análisis es paralelo al de

(3) los cherokees están desapareciendo

donde la frase nominal se refiere a la clase y la frase verbal predica algo de esa clase. Pero el paralelismo dura poco, pues pronto nos percatamos de que (2) probablemente aparece en el lenguaje, mediante eliminación, a partir de

(4) los leones del zoológico son diecisiénte en número,

que a su vez probablemente derive de algo como

(5) diecisiénte leones están en el zoológico.

Este no es el lugar adecuado para explorar en detalle la gramática de los términos numéricos. Baste señalar que difieren en muchos aspectos importantes de términos que no dudamos en llamar predicados. Probablemente lo más cercano a un auténtico predicado de clase que entrañe términos numéricos es algo en la línea de “diecisiénte-membrode”*** o

* Esta expresión traduce “number word” sistemáticamente (T.).

** En inglés se dice de alguien que “es” diecisiénte años, no que los “tiene”, como sucede en castellano (T.).

***El ejemplo es “seventeen-membered”, que no puede traducirse ahora por “de diecisiénte miembros”, como hemos hecho en casos similares anteriores, pues tal recurso impediría, aquí, distinguirlo del ejemplo siguiente (T.).
“tiene dieciséis miembros”. Pero el paso desde ahí hasta “dieciséis” como predicado de clase es desde luego un largo paso. De hecho, me inclinaría a creer que el hecho de señalar los dos predicados de arriba equivale a tirar de la manta —pues ¿en qué consiste ser el análisis de “dieciséis” cuando este término aparece en tales frases?—.

No es sólo que haya evidencia gramatical escasa para sustentar esta postura; parece además haber evidencia considerable en su contra, como revelaría inmediatamente cualquier análisis de la similaridad de funciones entre los términos numéricos y “muchos”, “pocos”, “todos”, “algunos”, “cualquiera”, etc. El estudio apropiado de estas cuestiones tendrá que esperar otro contexto, pero la naturaleza no predicativa de los términos numéricos puede constatarse aún más al percatarse de cuán diferentes son de, digamos, los adjetivos ordinarios, que hacen funciones de predicados. Hemos visto ya que los términos numéricos no aparecen realmente en posición típicamente predicativa (esto es, en “es —son— ...”), siendo los únicos casos supuestos los construidos en la línea de (2), más arriba, y por lo tanto más bien implausibles. La otra anomalía es que los términos numéricos normalmente son de categoría superior a todos los adjetivos (o a todos los demás adjetivos, si uno desea clasificarlos como tales) al tener que aparecer al principio de una serie de adjetivos ensartados, y no en su interior. Se trata de una categoría tan poderosa que la desviación, virtualmente inevitable, tiene como resultado expresiones que pecan contra la gramaticalidad. El enunciado

(6) las cinco bonitas pequeñas cuadradas tejas azules

es correcto, pero cualquier modificación de la posición de “cinco” produce una secuencia incorrecta; por cuánto más a la derecha.

El tradicional análisis de primer orden de enunciados tales como (1), con el que comenzamos, proporciona razones adicionales para negar la

* El enunciado original amontona cinco adjetivos seguidos: “The five lovely little square blue tiles”, en una construcción imposible en castellano, donde hay que dejar algún campo tras el sustantivo. Para colmo, en nuestra lengua la movilidad del numeral es mucho mayor que en inglés (véase la nota 1 de esta página) (T.).

1. Podría pensarse que construcciones tales como

(i) los furiosos cinco se fueron a casa

constituyen contraejemplos de la tesis de que los términos numéricos deben ir primero en una secuencia de adjetivos. Pero no es así. Pues en (i) y casos similares el término numérico aparece como nombre y no como adjetivo, derivando probablemente de

(ii) los cinco furiosos \(FN_{pl} \) se fueron a casa

[siendo \(FN_{pl} \) frase nominal en plural] mediante la transformación obvia, y debería entenderse como tal. Hay contraejemplos genuinos, pero el asunto es demasiado complicado para discutirlo aquí.

Mathesis
naturaleza predicativa de los términos numéricos. Pues el análisis habitual sería:

\[(7) \exists x_1 \ldots (\exists x_{17})(Lx_1 \cdot Lx_2 \cdot \ldots \cdot Lx_{17} \cdot x_1 \neq x_2 \cdot x_1 \neq x_3 \cdot \ldots \cdot x_{16} \neq x_{17} \cdot (y)(Ly \supset. y = x_1 \lor y = x_2 \lor \ldots \lor y = x_{17})).\]

El único predicado de (1) que permanece es "léon en el zoológico", dando "diecisiete" lugar a numerosos cuantificadores, funciones de verdad, variables, y apariciones de "=" a no ser que, por supuesto, uno desee considerar también a éstos como predicados de clases. Pero hay desde luego escasas razones para la postura de que (1) o (7) prediquen la diecisiete-idad de la clase de los leones del zoológico. Los términos numéricos funcionan de tal manera como operadores tales como "todos", "algunos", etc., que la disposición para convertirlos en nombres de clase debería acompañarse de la correspondiente disposición para hacer lo propio con respecto a los cuantificadores, y por tanto probar (según la moda filosófica tradicional) la existencia del uno, el muchos, el pocos, el todos, el algunos, el cualquiera, el todo, el varios y el cada.

Pero entonces, ¿qué sustento tiene esta postura? Bien, el siguiente, que es mucho: si dos clases tienen cada una diecisiete miembros, probablemente exista una clase que las contenga a ambas en virtud de ese hecho. Digo "probablemente" por que esto varía según la teoría de conjuntos que consideremos. Por ejemplo, no es el caso con la teoría de los tipos, ya que las dos clases tienen que ser del mismo tipo. Pero en ninguna teoría consistente hay una clase de todas las clases con diecisiete miembros, al menos no junto al aparato conjuntivista estándar. La existencia de las paradojas es en sí misma una buena razón para negar a "diecisiete" este rol unívoco de designar la clase de todas las clases con diecisiete miembros.

Por esta razón creo que podemos concluir que "diecisiete" no necesita considerarse como un predicado de clases, y similarmente que no hay necesidad de ver el 3 como el conjunto de todos los trinos. Esto no es negar que "es una clase que tiene tres miembros" es un predicado de clases; pero eso es desde luego un asunto diferente, pues se sigue de todas las explicaciones en consideración. Nuestro problema presente es ver si hay una explicación que pueda establecerse con la exclusión de todas las otras, y por tanto que establezca qué conjuntos son realmente los números. Y debería estar ya claro que no la hay. Cualquier propósito

1. Y desde luego, ¿por qué no "soy el que lo dio todo luchando por los pocos contra los muchos"?
2. Dentro de los límites impuestos por la consistencia.
que podamos tener al dar una explicación de la noción de número y de los números individuales, que fuese distinta de la petición de principio consistente en probar del conjunto de conjuntos correcto que él es el conjunto de-los números, será igualmente bien (o mal) cumplido por cualquiera de la serie infinita de explicaciones que satisfagan las condiciones que establecimos tan tediosamente. Hay escasa necesidad de examinar todas las posibilidades en detalle, una vez que se ha visto que la tradicionalmente favorecida de Frege y Russell no es la única conveniente.

¿Dónde nos deja esto? He sostenido que a lo sumo una de la serie infinita de explicaciones distintas que satisfacen nuestras condiciones puede ser correcta, sobre la base de que no son siquiera extensionalmente equivalentes, y por lo tanto al menos todas excepto una, y posiblemente todas, contienen condiciones que no son necesarias y que llevan a la identificación de los números con algún conjunto particular de conjuntos. Si los números son conjuntos, entonces deben ser conjuntos particulares, pues cada conjunto es algún conjunto particular. Pero si el número 3 es realmente un conjunto más bien que otro, debe ser posible dar alguna razón convincente para creerlo así; pues la posición de que ésta es una verdad incognoscible es difícilmente sostenible. Pero parece haber poco que escoger entre las explicaciones. Una funciona tanto como otra, relativamente a nuestro propósito al dar una explicación de estas cuestiones, dejando las preferencias estilísticas a un lado. No hay ninguna forma conectada con la referencia de los términos numéricos que nos permita escoger entre ellas, pues las explicaciones difieren en lugares donde no hay conexión de ningún tipo entre los rasgos de las explicaciones y nuestros usos de los términos en cuestión. Si todo lo anterior es convincente, entonces hay poco que concluir, excepto que cualquier rasgo de una explicación que identifique 3 con un conjunto es superfluo —y que por lo tanto 3, y sus compañeros, no pueden ser conjuntos de ninguna manera—.

III. Salida

En esta tercera y última sección examinaré y defenderé algunas consideraciones que espero añadan plausibilidad a la conclusión de la sección previa, aunque sólo sea por contraste. Las cuestiones implicadas son evidentemente tan numerosas y complejas, y cubren un espectro tan amplio de problemas filosóficos, que en este artículo no puedo hacer más que indicar cuáles creo que son y cómo, en general, creo que pue-
den resolverse. Espero no obstante que una explicación más positiva emergirá de estas consideraciones.

A. Identidad. A lo largo de las dos primeras secciones he discutido expresiones de la forma

\[n = s, \]

donde \(n \) es una expresión a base de números y \(s \) una expresión a base de conjuntos, como si pensara que tales expresiones tienen un sentido perfectamente aceptable, y que fuera nuestra tarea separar las verdaderas de las falsas.\(^1\) Y podría parecer que había concluido que todos esos enunciados eran falsos. Hice esto para dramatizar el tipo de respuesta que un fregeano podría dar a la petición de un análisis del número —para destacar el tipo de pregunta que Frege consideraba adecuada—. Pues él claramente quería que el análisis determinara un valor de verdad para cada identidad tal. De hecho Frege quería determinar un sentido para el resultado de reemplazar \(s \) por algún nombre o descripción cualquiera (mientras una expresión habitualmente interpretada como nombrando un número ocupaba la posición de \(n \)). Dada la simetría y la transitividad de la identidad, había tres tipos de identidades satisfaciendo estas condiciones, que corresponden a los tres tipos de expresiones que pueden aparecer a la derecha:

(a) con alguna expresión aritmética tanto a la derecha como a la izquierda (por ejemplo, \('2^{17} = 4.892' \), etc.);

(b) con una expresión designando un número, pero de una forma aritméticamente estándar, como \('el número de manzanas en el tarro' \), o \('el número de F's' \) (por ejemplo, \(7 = \) el número de enanos);

(c) con una expresión referencial a la derecha que no sea de ninguno de los tipos mencionados, tal como \('Julio César', '[[\varnothing]]' \) (por ejemplo, \(17 = [[[\varnothing]]] \)).

El requisito de que las leyes habituales de la aritmética se sigan de la explicación se encarga de todas las identidades del primer tipo. El añ-a-

1. Me complació hallar que varios de los puntos de mi discusión de Frege habían sido defendidos de forma completamente independiente por Charles Parsons (1965). Estoy en deuda con su análisis por cierto número de mejoras.
dir una explicación del concepto de cardinalidad bastará pues para las del tipo (b). Pero para incluir las del (c) Frege creyó necesario hallar algunos “objetos” que las expresiones numéricas nombrasen y con las que los números pudieran identificarse. Entonces fue cuando comenzó a parecer que las preguntas sobre qué conjunto de objetos eran realmente los números que requerían respuesta, pues, evidentemente, la respuesta simple “números” no funcionaría.

Para hablar desde el punto de vista de Frege, hay un mundo de objetos —esto es, las designaciones o referentes de nombres, descripciones, etc.— donde la relación de identidad reina libremente. Para Frege tenía sentido preguntar de cualesquiera dos nombres (o descripciones) si nombraban el mismo objeto u objetos diferentes. De aquí la queja, en un punto de su argumentación, de que uno no podría determinar, según sus definiciones, si Julio César era un número.

Más bien dudo que para explicar el uso y el significado de los términos numéricos tenga uno que decidir si Julio César era (¿es?) o no el número 43. La insistencia de Frege en que esto tenía que hacerse procedía, pienso yo, de su lógica (demostrablemente) inconsistente (interpretada de modo lo suficientemente amplio como para incluir la teoría de conjuntos). Todas las cosas (nombres) del universo eran equivalentes, y la pregunta de si dos nombres tenían el mismo referente tenía presumiblemente siempre una respuesta —sí o no—. La inconsistencia de la lógica de la que esto procede proporciona desde luego alguna razón para observar la postura con desconfianza. Pero difícilmente constituye una refutación, ya que uno podría garantizar la plena significación de todos los enunciados de identidad, la existencia de un conjunto universal como ámbito de la relación, y tener aún principios sobre la existencia de conjuntos lo suficientemente restrictivos como para evitar la inconsistencia. Pero tal postura, separada de la teoría ingenua de conjuntos de la que procede, pierde mucho de su atractivo.

Propongo negar que todas las identidades son significativas; en particular propongo descartar todas las cuestiones de la forma de (c) como sinsentidos o “a-semánticas”* (no son completos sinsentidos, pues captamos lo suficiente de su sentido como para explicar por qué son sinsentidos). Los enunciados de identidad tienen sentido sólo en contextos donde existan condiciones de individuación posibles. Si una expresión de la forma “x = y” ha de tener sentido, sólo lo tendrá en contextos donde esté claro que tanto x como y son de algún tipo o categoría C, y que son las condiciones que individualizan las cosas como la misma C

* Traducimos así “unsemantical”, aunque cierto matiz se pierda, para evitar un neologismo (T.).
dir una explicación del concepto de cardinalidad bastará pues para las del tipo (b). Pero para incluir las del (c) Frege creyó necesario hallar algunos "objetos" que las expresiones numéricas nombrasen y con las que los números pudieran identificarse. Entonces fue cuando comenzó a parecer que las preguntas sobre qué conjunto de objetos eran realmente los números que requerían respuesta, pues, evidentemente, la respuesta simple "números" no funcionaría.

Para hablar desde el punto de vista de Frege, hay un mundo de objetos —esto es, las designaciones o referentes de nombres, descripciones, etc.— donde la relación de identidad reina libremente. Para Frege tenía sentido preguntar de cualesquiera dos nombres (o descripciones) si nombraban el mismo objeto u objetos diferentes. De aquí la queja, en un punto de su argumentación, de que uno no podría determinar, según sus definiciones, si Julio César era un número.

Más bien dudo que para explicar el uso y el significado de los términos numéricos tenga uno que decidir si Julio César era (¿es?) o no el número 43. La insistencia de Frege en que esto tenía que hacerse proce-día, pienso yo, de su lógica (demostrablemente) inconsistente (interpretada de modo lo suficientemente amplio como para incluir la teoría de conjuntos). Todas las cosas (nombres) del universo eran equivalentes, y la pregunta de si dos nombres tenían el mismo referente tenía presumiblemente siempre una respuesta —sí o no—. La inconsistencia de la lógica de la que esto procede proporciona desde luego alguna razón para observar la postura con desconfianza. Pero difícilmente constituye una refutación, ya que uno podría garantizar la plena significación de todos los enunciados de identidad, la existencia de un conjunto universal como ámbito de la relación, y tener aún principios sobre la existencia de conjuntos lo suficientemente restrictivos como para evitar la inconsistencia. Pero tal postura, separada de la teoría ingenua de conjuntos de la que procede, pierde mucho de su atractivo.

Propongo negar que todas las identidades son significativas; en particular propongo descartar todas las cuestiones de la forma de (c) como sinsentidos o "a-semánticas" (no son completos sinsentidos, pues captamos lo suficiente de su sentido como para explicar por qué son sinsentidos). Los enunciados de identidad tienen sentido sólo en contextos donde existan condiciones de individuación posibles. Si una expresión de la forma "\(x=y\)" ha de tener sentido, sólo lo tendrá en contextos donde esté claro que tanto \(x\) como \(y\) son de algún tipo o categoría \(C\), y que son las condiciones que individualizan las cosas como la misma \(C\)

* Traducimos así "unsemantical", aunque cierto matiz se pierda, para evitar un neologismo (T.).

Mathesis
las que son operativas y determinan su valor de verdad. Un ejemplo podría ayudar a clarificar la cuestión. Si sabemos que \(x\) e \(y\) son farolas (posiblemente la misma, pero nada en la forma en que son designadas decide la cuestión) podemos preguntar si son \(la\ misma\ farola\). Será su color, historia, masa, posición, etc., lo que determine si son, en efecto, la misma farola. Similarmente, si sabemos que \(z\) y \(w\) son números, entonces podemos preguntar si son \(el\ mismo\ número\). Y lo que decida si son en efecto el mismo número será el que sean primos, mayores que 17, etc. Pero precisamente de la misma manera que no podemos individualizar una farola en términos de estos últimos predicados, tampoco podemos individualizar un número en términos de su masa, color, o consideraciones similares. Lo que determina que algo sea una \(farola\ particular\) no podrá individualizarla como un \(número\ particular\).

Estoy sosteniendo que las preguntas sobre la identidad de una \("entidad\) particular carecen de sentido. \("Entidad\) es algo demasiado amplio. Para que tales preguntas tengan sentido, debe haber un bien atrincherado predicado \(C\), en términos del cual se pregunte entonces sobre la identidad de un \(C\ particular\), y las condiciones asociadas con la identificación de los diversos \(C\) como el mismo \(C\) serán las decisivas. Por lo tanto, si para dos predicados \(F\) y \(G\) no hay un tercer predicado \(C\) que los subsuma a ambos y que tenga asociadas algunas condiciones uniformes para identificar dos supuestos elementos como el mismo (o diferente) \(C\), los enunciados de identidad que crucen la frontera de \(F\) y \(G\) carecerán de sentido.1 Por ejemplo, tendrá sentido preguntar de algo \(x\) (que sea de hecho una silla) si es el mismo... que y (que sea de hecho una mesa). Pues podemos llenar el espacio en blanco con un predicado, \("mueble\)”, y sabemos lo que significa para \(a\) y \(b\) ser el mismo o distinto mueble. Para decirlo de forma diferente, las cuestiones de identidad contienen la presuposición de que las \("entidades\) investigadas pertenecen ambas a alguna categoría general. Esta presuposición está normalmente implícita en el contexto o la teoría (que es un contexto más sistemático). Decir que ambas son \("entidades\) es no hacer ninguna presuposición —pues todo pretende ser al menos eso—. \("Entidad\), \("cosa\), \("objeto\) son términos que tienen un rol en el lenguaje: el de llenar espacios,” y su función es análoga a la de los pronombres (y, en contextos más formalizados, a la de las variables de cuantificación).

1. Para dar una explicación precisa sería necesario explicar la expresión \("condiciones necesarias\) de tal modo que excluyese los obvios contrasejemplos generados por condiciones disyuntivas construidas \(ad\ hoc\). No pretendiendo conocer la respuesta en ninguno de sus detalles.

* La expresión original es \("they are place fillers\), con lo que el autor se está refiriendo, obviamente, al ejemplo de unas líneas más arriba (T.).

9 (1993)
La identidad es id-entidad, pero solamente dentro de contextos estrechamente restringidos. Alternativamente, lo que constituye una entidad es algo dependiente de una categoría o teoría. Hay realmente dos formas correlativas de ver el problema. Una podría concluir que la identidad es sistemáticamente ambiguía, o bien se podría estar de acuerdo con Frege en que la identidad no es ambiguía y significa siempre mismidad de objeto, pero añadir (ahora contra Frege) que la noción de objeto varía de una teoría a otra, de una categoría a otra —y por lo tanto que el error es el fracaso en percatarse de ese hecho—. Esto último es lo que estoy sosteniendo, pues tiene la virtud de preservar la identidad como una relación lógica general cuya aplicación en cualquier contexto dado bien definido (esto es, uno dentro del cual la noción de objeto sea unívoca) se mantiene sin problemas. En consecuencia, la lógica puede todavía verse como la más general de las disciplinas, aplicable de la misma manera a —y dentro de— cualquier teoría dada. Se mantiene como el instrumento aplicable a toda disciplina o teoría, radicando la diferencia sólo en que se deja a la disciplina o teoría determinar qué contará como un “objeto” o “individuo”.

El lenguaje sugiere también que ésta no es una postura implausible. Contextos de la forma “el mismo G” abundan, y desde luego es en términos de tales contextos en los que la identidad debería explicarse, pues lo que contará como el mismo G dependerá fuertemente de G. El mismo hombre tendrá que ser un hombre individual; “el mismo acto” es una descripción que puede ser satisfecha por muchos actos individuales, o sólo por uno, pues las condiciones de individuación para actos hacen de ellos unas veces tipos y otras ejemplos concretos.** En el lenguaje son muy raros los contextos abiertos a (satisfacibles por) cualquier tipo de “cosa” que se quiera. Hay algunos —por ejemplo, “Sam se refirió a...”, “Helen pensó en...”— y parece perfectamente correcto preguntar si a lo que Sam se refirió en alguna ocasión fue aquello en lo que Helen pensó. Pero tales contextos son muy escasos, y parecen ser todos intensionales, lo que proyecta una sombra Referencialmente opaca sobre el rol que la identidad juega en ellos.

Algunos desearían argumentar que las identidades del tipo (c) no son sinsentidos o a-semánticas, sino simplemente falsas —sobre la base de que la distinción de categorías es una distinción que no puede trazarse—. Sólo tengo el siguiente argumento para contrarrestar tal postura. Será tan difícil explicar cómo sabe uno que tales identidades son falsas

* Si se traduce aquí “sameness” por “identidad” la frase no funciona (T.).

** El sentido de “tokens” aquí es el de subrayar lo particular frente a lo general (“types”), así que traducimos señalando inequívocamente tal oposición (T.).
como lo sería explicar cómo sabe uno que son sinsentidos, pues normalmente sabemos que alguna identidad “x=y” es falsa sólo si sabemos que x (o y) tiene alguna característica que sepamos que y (o x) no tiene. Sé que 2 ≠ 3 por que sé, por ejemplo, que 3 es impar y 2 no, aunque parece claramente erróneo argumentar que sabemos que 3 ≠ [[[Ø]]] porque, por ejemplo, sabemos que 3 no tiene ningún miembro (o dieciseis, o infinitos) mientras que [[[Ø]]] tiene exactamente uno. No sabemos tal cosa. No sabemos si funciona. Pero el que funcione no equivale a saber que lo hace. Lo que es atractivo de la postura de que tales identidades son todas falsas es, desde luego, que difícilmente parecen ser preguntas abiertas de las que podamos hallar la respuesta cualquier día. Está claro que toda la evidencia radica en su interior; si no es posible una decisión en base a ello, ninguna será posible nunca. Pero para nuestros propósitos inmediatos la diferencia entre estas dos posturas no es muy seria. Ciertamente estaría contento con la conclusión de que todas las identidades del tipo (c) son sinsentidos o falsas.

B. Explicación y reducción. Me gustaría ahora abordar la cuestión desde un ángulo ligeramente distinto. A lo largo de este artículo he estado discutiendo lo que esencialmente era la postura de Frege, en un esfuerzo por proyectar alguna luz sobre el significado de los términos numéricos mediante la exposición de las dificultades que envuelve el tratar de determinar qué objetos son realmente los números. Todos los análisis que hemos considerado contienen la condición de que los números son conjuntos, y de que, por lo tanto, cada número individual es algún conjunto individual. Al final de la sección II concluimos que definitivamente los números no podían de ninguna manera ser conjuntos —sobre la base de que no hay buenas razones para decir que cualquier número particular es algún conjunto particular—. Para reforzar nuestro argumento podría ser instructivo fijarnos brevemente en dos actividades estrechamente relacionadas con la de sostener que los números son conjuntos —la explicación y la reducción—.

Al desplegar una explicación del número el filósofo puede sostener como parte de su explicación el enunciado de que 3 = [[[Ø]]]. ¿Se sigue de esto que esté cometiendo la clase de error de que he acusado a Frege? Creo que no, pues hay una diferencia entre afirmar que 3 es el conjunto de todos los trios e identificar 3 con ese conjunto, y lo último es lo que se puede hacer en el contexto de alguna explicación. No deseo ciertamente que lo que estoy argumentando en este artículo milita contra la identificación de 3 con cualquier cosa que nos guste. La diferencia radica en que, normalmente, quien identifica 3 con algún conjunto parti-
cular lo hace con el fin de presentar alguna teoría y no afirma que haya descubierto qué objeto es realmente el 3. Podríamos querer saber si algún conjunto (y sus relaciones, etc.) funcionaría como sustituto del número. Al investigar esto sería enteramente legítimo establecer que al hacer tal identificación podemos hacer con ese conjunto (y aquellas relaciones) lo que ahora hacemos con los números. De aquí que encontremos a Quine diciendo

Frey se consideró la cuestión “¿Qué es un número?”, mostrando cómo la tarea para la que los objetos en cuestión podrían necesitarse podría ser hecha por objetos cuya naturaleza se pusiese menos en cuestión [Quine 1960, 262].

Ignorando si ésta es una correcta interpretación de Frege, alguien que diga esto seguramente no afirma que, puesto que la respuesta ha terminado siendo “sí”, está claro ahora que los números habían sido realmente conjuntos siempre. En tal contexto, la adecuación de algún sistema de objetos a la tarea es una cuestión muy real y que puede ser establecida. Bajo nuestro análisis, cualquier sistema de objetos, conjuntos o no, que forme una progresión recursiva debe ser adecuado. Así, descubrir que un sistema diferente hará el trabajo perfectamente no puede ser descubrir qué objetos son los números... La explicación, en el sentido reduccionista de más arriba, es por tanto neutral con respecto a la clase de problema que hemos estado discutiendo, pero proyecta una cierta luz sobre qué es ser un número individual.

Hay otra razón para negar que pueda ser legítimo usar la reducibilidad de la aritmética a la teoría de conjuntos como una razón para afirmar que después de todo los números son realmente conjuntos. Gaisi Takeuti ha mostrado que la teoría de conjuntos de Gödel-von Neumann-Bernays es en un sentido fuerte reducible a la teoría de los números ordinales menores que el menor número inaccesible (1954). Como era de esperar, los números son conjuntos; después de todo, los conjuntos son realmente números (ordinales). Pero entonces, ¿qué es realmente qué?

Estos breves comentarios sobre la reducción, la explicación y lo que podría decirse que logran en matemáticas, nos lleva de regreso a la cita de Richard Martin que encabeza este artículo. Martin señala correctamente que el interés del matemático se detiene en el nivel de la estructura. Si una teoría puede ser modelada en (esto es, reducida a) otra entonces las preguntas adicionales sobre si los individuos de una teoría son realmente los de la otra ya no surgen. En el mismo pasaje, Martin prosigue señalando (con aprobación, interpreto yo) que el filósofo no está satisfecho con esta visión limitada de las cosas. Quiere saber más y
formulan las preguntas en las que los matemáticos no manifiestan interés alguno. Estoy de acuerdo. Lo hace. Y lo hace erróneamente. El tema principal del resto de este artículo será sostener que tales cuestiones implica, al menos, el no entender de qué trata la aritmética.

C. Conclusión: números y objetos. Se señaló más arriba que cualquier sistema de objetos, conjuntos o no, que constituya una progresión recursiva debe ser adecuado. Pero esto es extraño, pues cualquier conjunto recursivo puede ser dispuesto como progresión recursiva. Así, lo que realmente importa no es alguna condición de los objetos (esto es, en el conjunto) sino más bien una condición en la relación bajo la que éstos constituyen una progresión. Para decirlo de otro modo —y éste es el quid de la cuestión— que cualquier secuencia recursiva funcionaría sugerir que lo que es importante no es la individualidad de cada elemento, sino la estructura que conjuntamente exhiben. Este es un rasgo extremadamente sorprendente. A partir de este solo hecho, uno sería conducido a esperar que la cuestión de si un "objeto" particular —por ejemplo, [[[Ø]]]— podría funcionar como sustituto del número 3, sería finalmente un sinsentido, como en efecto lo es. Los "objetos" no pueden hacer solos el trabajo de los números —o el sistema total desempeña la tarea o nada lo hace—. Por lo tanto, extendiendo el argumento que nos llevó a la conclusión de que los números no podrían ser conjuntos, sostengo que los números no podrían ser objetos de ninguna clase; pues no hay más razón para identificar un número individual con un objeto particular que para hacerlo con cualquier otro (que no se sepa ya que es un número).

La inutilidad de tratar de determinar qué objetos son los números se deriva así directamente de la inutilidad de hacer la pregunta para cualquier número individual. Las propiedades de los números que no proceden de las relaciones que mantienen entre sí, en virtud de estar dispuestos en una progresión, no tienen ningún tipo de consecuencia en lo tocante a los fines de la aritmética. Pero serían sólo esas propiedades las que distinguirían un número como este o aquel objeto.

Por tanto los números no son objetos en absoluto, pues al dar las propiedades (necesarias y suficientes) de los números se está meramente caracterizando una estructura abstracta —y la distinción radica en el hecho de que los "elementos" de la estructura no tienen más propiedades que aquellas que los relacionan con otros "elementos" de la misma estructura—. Si identificamos una estructura abstracta con un sistema de relaciones (en intención, por supuesto, o bien con el conjunto de todas las relaciones en extensión isomórficas con un sistema dado de rela-
ciones), entonces obtenemos la aritmética elaborando las propiedades de la relación ‘menor que’, o de todos los sistemas de objetos (a saber, estructuras concretas) que exhiban esa estructura abstracta. El hecho de que un sistema de objetos exhiba la naturaleza de los enteros implica que los elementos de ese sistema tienen algunas propiedades que no dependen de la estructura. Debe ser posible individualizar aquellos objetos independentemente del papel que hacen en esa estructura. Pero esto es precisamente lo que no se puede hacer con los números. Ser el número 3 no es ni más ni menos que estar precedido por el 2, el 1 y posiblemente el 0, y seguido por el 4, el 5 y así sucesivamente. Y ser el número 4 no es ni más ni menos que estar precedido por el 3, el 2, el 1 y posiblemente el 0, y seguido por... Cualquier objeto puede hacer el papel del 3; esto es, cualquier objeto puede ser el tercer elemento en alguna progresión. Lo que es peculiar del 3 es que define ese papel —no por ser el paradigma de cualquier objeto que lo haga, sino por representar la relación que cualquier tercer miembro de una progresión mantiene con el resto de la progresión—.

La aritmética es por tanto la ciencia que elabora la estructura abstracta que todas las progresiones tienen en común por el solo hecho de ser progresiones. No es una ciencia que trate con objetos particulares —los números—. La búsqueda de qué objetos particulares independentemente identificables son realmente los números (¿conjuntos? ¿Julios Césares?) es algo equivocado.

Desde esta posición, muchas cosas que nos dejan perplejos en este artículo parecen encajar en su lugar. La razón de que sean posibles tantas interpretaciones de la teoría de números sin que ninguna de ellas se distinga de forma única resulta obvia: no hay ningún conjunto único de objetos en el que los números consistan. La teoría de números es la elaboración de las propiedades de todas las estructuras del tipo de orden de los números. Los términos numéricos no tienen referentes únicos. Más aún, la razón de que la identificación de los números con objetos funcione al por mayor pero fracase estrepitosamente objeto por objeto radica en el hecho de que la teoría elabora una estructura abstracta y no las propiedades de individuos independientes cualquiera de los cuales podría caracterizarse sin referencia a sus relaciones con el resto. Sólo cuando consideramos que una secuencia particular es, no los números, sino de la estructura de los números, comienza a tener algún sentido el preguntar qué elemento es el 3, o más bien qué elemento corresponde con él.

Tópicos como “la aritmética trata sobre números”, “los términos numéricos se refieren a números”, cuando se mantienen correctamente,
pueden interpretarse como señalando dos cosas totalmente distintas: (1) que los términos numéricos no son nombres de entidades no numéricas especiales, como conjuntos, tomates, o monstruos de Gila; y (2) que una postura puramente formalista que fracase al asignar un sentido cualquiera a los enunciados de la teoría de números es también errónea. No es necesario que ambas cosas sean incompatibles con lo que estoy sosteniendo aquí. Este último formalismo es demasiado radical. Pero hay una forma modificada de él, que también niega que los términos numéricos sean nombres, que constituye una extensión plausible y tentadora de la postura que he estado manteniendo. Permítaseme sugerirla aquí. Desde este punto de vista la secuencia de los términos numéricos es sólo eso —una secuencia de palabras o expresiones con ciertas propiedades—. No hay dos tipos de cosas, números y términos numéricos, sino sólo una, las palabras mismas. La mayor parte de las lenguas contienen tal secuencia, y cualquiera de ellas (de palabras o términos) servirá los fines para los que tenemos la nuestra, a condición de que sea recursiva en el aspecto relevante. Al contar no correlacionamos conjuntos con segmentos iniciales de la secuencia de los términos numéricos. La idea central es que esta secuencia recursiva es un tipo de norma que usamos para medir conjuntos. Las cuestiones acerca de la identificación de los referentes de los términos numéricos deberían ser desechadas como mal concebidas, precisamente en la forma en que una cuestión sobre los referentes de las partes de una regla se vería como mal concebida.

Aunque alguna secuencia de expresiones con la estructura apropiada hiciese el trabajo para el que empleamos nuestros actuales términos numéricos, hay todavía una razón para tener una notación relativamente uniforme: la comunicación ordinaria. Demasiadas secuencias de uso común harán necesario para nosotros el aprender demasiadas equivalencias diferentes. La objección habitual a tal explicación, es decir, que hay una distinción entre números y términos numéricos, creo que no funciona. Se hace sobre la base de que los términos "dos", "zwei", "deux", "2" se supone que "están por" el mismo número, pero son palabras diferentes (una de ellas ni siquiera es una palabra). Se pueden marcar las diferencias entre las expresiones en cuestión, tanto como las similitudes, sin evocar ningún tipo de objetos extralingüísticos que éstas nombren. Se necesita sólo señalar las similitudes de función: dentro de algún sistema de numeración lo importante será saber qué lugar en el sistema acostumbra a marcar cualquier expresión. Todas las expresiones mencionadas más arriba comparten entre sí esta característica —y también con el uso binario de "10", pero no con su empleo decimal—. Así, la "ambigüedad" de "10" se explica fácilmente. Vemos aquí otra
vez la naturaleza relacional-seriada de los números individuales, excepto en que ahora ésta se proyecta de manera más cercana a nosotros." No podríamos decir qué número representa una expresión particular sin que se nos dé la secuencia de la que forma parte. Su individualidad derivará entonces de su lugar en esa secuencia —esto es, de su relación con otros miembros de la secuencia y de las reglas que gobiernan el uso de la secuencia al contar—. Es por esta última razón por la que sostenía yo, contra Quine, que la explicación de la cardinalidad debe incluirse explícitamente en la explicación del número (véase la nota 1, página 321).

Además, otras cosas encajan también en su sitio. El requisito, discutido en la sección I, de que la relación "menor que" sea recursiva se explica mejor en términos de una notación recursiva. Después de todo, la teoría de las funciones recursivas en su totalidad tiene el máximo sentido cuando se considera en estrecha conexión con notaciones más bien que con objetos extralingüísticos. Esto se torna de lo más obvio en tres lugares: el desarrollo de la teoría mediante sistemas de Post, mediante máquinas de Turing, y en la teoría de ordinales constructivos, donde el tema concierne abiertamente a las notaciones recursivas para los ordinales. No veo por qué esto no debería ser verdadero también de los ordinales finitos. Pues un conjunto de números es recursivo si y sólo si una máquina de un tipo particular se pudiese programar para generarlo en orden de magnitud —esto es, para generar las notaciones estándar o canónicas para aquellos números que sigan el orden (inverso) de la relación "menor que". Si esa relación sobre la notación no fuese recursiva el teorema de arriba no se mantendría.

Esto hace además obvia la razón de que todos los análisis del número que se han presentado han incluido siempre una relación recursiva "menor que". Si lo que estamos generando es una notación, la forma más natural de generarla es dando reglas recursivas para obtener el siguiente elemento de cualquier elemento que podamos tener —y se tendría que salir muy fuera del camino (y estar ligeramente loco) para generar la notación y entonces definir "menor que", como hice en la sección I al discutir el requisito de la recursividad—.

Además, desde este punto de vista aprendemos las operaciones aritméticas elementales como las operaciones cardinales sobre conjuntos pequeños, y las extendemos mediante los algoritmos usuales. La aritmética se, convierte entonces de manera obvia en aritmética cardinal en los niveles iniciales, y los enunciados más avanzadas se tornan fácilmente interpretables como proyecciones vía funciones de verdad, cuantifica-

* De nuevo la versatilidad del inglés nos derrota: "the series-related character of individual numbers, except that it is now mapped a little closer to home" (T.).
dores, y reglas recursivas que gobiernan las operaciones. Por lo tanto, uno puede ser de esta clase de formalistas sin negar que exista una verdad aritmética distinta de la derivabilidad dentro de algún sistema dado. Uno puede incluso explicar lo que el formalista ordinario aparentemente no puede —por qué fueron escogidos estos axiomas y cuál de dos extensiones consistentes posibles deberíamos adoptar en cada caso dado—.

Pero debo detenerme aquí. No puedo defender esta posición en detalle sin escribir un libro. Para volver, al terminar, a nuestros pobres niños abandonados, creo que debemos concluir que su educación fue mal dirigida, no desde el punto de vista matemático, pues hemos concluido que no hay ninguna diferencia matemática significativa entre lo que ellos aprendieron y lo que saben los mortales corrientes, sino desde el punto de vista filosófico. Creen éstos que los números son realmente conjuntos de conjuntos, pero, si sabemos la verdad, no hay cosas tales como los números; lo cual no es negar que haya al menos dos números primos entre el 15 y el 20.

Bibliografía citada